• Skip to main content
  • Skip to primary sidebar
  • Home
  • Construction Engineering
    • Civil Engineering Construction
    • Plain & Reinforced Concrete-II
    • Civil Engineering Estimation
    • Engineering Materials
    • Structural Engineering
  • Mechanics
    • Mechanics of Solids 1
    • Mechanics of Solids 2
    • Soil Mechanics 1
    • Soil Mechanics 2
  • Survey
    • Surveying and Levelling
    • Surveying and Levelling 2
  • Environmental Engineering
    • Environmental Engineering
    • Environmental psychology
    • Environment planning
    • Environmental Design
  • Water Engineering
    • Fluid Mechanics 1
    • Fluid Mechanics 2
    • Hydraulic Engineering
    • Irrigation Engineering
    • Engineering Hydrology
  • Misc.
    • Pavement and Foundation
    • Engineering Geology
    • Theory of structures
    • Design of Structures
    • Steel Structures
    • Research methodology
    • Transportation Engineering
    • Contact Us

Civil Engineering Terms

Easy and Understandable Terms Related to Civil Engineering

You are here: Home / Soil Mechanics 2 / Consolidated-drained test (CD test) or slow test

Consolidated-drained test (CD test) or slow test

September 28, 2011 by admin Leave a Comment

Consolidated-drained test (CD test) or slow test:

CD test or slow test is one of the conditions of the laboratory shear test. The other two conditions are UU test and CU test.  UU test has low shear strength. Whereas in CU moisture is drawn out due to high pressure.

CD test is comparatively slower than others. It is used only for the search purposes. It requires more time and money than other methods. In this test soil consolidation occurs under normal load and drainage is allowed during the consolidation. At the completion of the consolidation process, the drainage conditions are to be allowed while normal stress is increased at such a rate that no pore pressure is developed. Thus the resulting parameters of the shear strength are in terms of effective stresses.

On engineering scale CD parameters are used in the problems where long term stability of clayey soil slopes and the long term lateral pressure on the cohesive soil retaining walls.

Consolidated drained or slow test is similar to the CU test except that the sample is allowed to drain. The axial load is applied in such a way that high excess pore pressure not to be developed.

The consolidated drained test is often referred to as the S, or slow test.

Filed Under: Soil Mechanics 2

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

Sponsors

Recent Posts

  • Brick calculator | Brickwork calculation and brick estimation
  • Los Angeles Abrasion test | Test for road aggregates
  • Shuttering removal time of different structural members
  • Weight of steel bars per meter – Weight of steel bars formula
  • How to calculate quantity of mortar and its materials
  • Specifications of First class brickwork
  • Properties of first class bricks

Pages

  • About CivilEngineeringTerms
  • Contact Us
  • Privacy Policy
  • Submit your article or Ask any query

Categories

  • Articles
  • Civil Engg Construction and Graphics
  • Civil Engg Construction and Graphics
  • Civil Engineering Construction
  • Civil Engineering Estimation
  • Civil Engineering Practice
  • Construction management
  • Design of Structures
  • Engineering Geology
  • Engineering Hydrology
  • Engineering Materials
  • Environment planning and practice
  • Environmental Engineering 1
  • Environmental psychology
  • Fluid Mechanics 1
  • Fluid Mechanics 2
  • General Terms related to Civil Engineering
  • Hydraulic Engineering
  • Introduction to Environmental Design
  • Mechanics of Solids 1
  • Mechanics of Solids 2
  • Pavement and Foundation
  • Plain & Reinforced Concrete-II
  • Research methodology
  • Soil Mechanics 1
  • Soil Mechanics 2
  • Steel Structures
  • Structural Engineering
  • Surveying and Levelling
  • Surveying and Levelling 2
  • Theory of structures 1
  • Transportation Engineering
  • Water Resources & Irrigation Engineering

Site Stats

Copyright © 2023 · Magazine Pro on Genesis Framework · WordPress · Log in