• Skip to main content
  • Skip to primary sidebar
  • Home
  • Construction Engineering
    • Civil Engineering Construction
    • Plain & Reinforced Concrete-II
    • Civil Engineering Estimation
    • Engineering Materials
    • Structural Engineering
  • Mechanics
    • Mechanics of Solids 1
    • Mechanics of Solids 2
    • Soil Mechanics 1
    • Soil Mechanics 2
  • Survey
    • Surveying and Levelling
    • Surveying and Levelling 2
  • Environmental Engineering
    • Environmental Engineering
    • Environmental psychology
    • Environment planning
    • Environmental Design
  • Water Engineering
    • Fluid Mechanics 1
    • Fluid Mechanics 2
    • Hydraulic Engineering
    • Irrigation Engineering
    • Engineering Hydrology
  • Misc.
    • Pavement and Foundation
    • Engineering Geology
    • Theory of structures
    • Design of Structures
    • Steel Structures
    • Research methodology
    • Transportation Engineering
    • Contact Us

Civil Engineering Terms

Easy and Understandable Terms Related to Civil Engineering

You are here: Home / Plain & Reinforced Concrete-II / Significance of Elastic Modulus of Concrete

Significance of Elastic Modulus of Concrete

November 2, 2011 by admin 1 Comment

Elastic Modulus of concrete:

The modulus of elasticity or “Young’s Modulus” is defined as the slope of the stress-strain curve within the proportional limit of a material. For a concrete material, the secant modulus is defined as the slope of the straight line drawn from the origin of axes to the stress-strain curve at some percentage of the ultimate strength. This is the value most commonly used in structural design.

Since no portion of the stress-strain curve is a straight line, the usual method of determining the Young’s Modulus is to measure the tangent modulus, which is defined as the slope of the tangent to the stress-strain curve at some percentage of the ultimate strength of the concrete as determined by compression tests.

From the figure we can see that the secant modulus is almost same to the tangent modulus obtained at some lower percentage of the ultimate strength.

Significance of elastic modulus of concrete:

The elastic modulus of concrete is a very important mechanical parameter reflecting the ability of the concrete to deform elastically. For example, in prestressed concrete structures, elastic shortening of prestressed concrete is one of the main factors contributing to prestress loss.

In addition, in order to make full use of the compressive strength potential, the structures using high-strength concrete tend to be slimmer and require a higher elastic modulus so as to maintain its stiffness. Therefore, knowledge of the modulus of high-strength concrete is very important in avoiding excessive deformation, providing satisfactory serviceability and achieving the most cost-effective designs.


Reference : Final Report by Mang tia, Yanjun Liu, In may 2005, Department of civil and coastal engineering, University of Florida, Gainesville, Florida.

Filed Under: Plain & Reinforced Concrete-II

Reader Interactions

Comments

  1. Ganesh says

    May 29, 2018 at 8:57 am

    Thanks. Niece information.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

Sponsors

Recent Posts

  • Brick calculator | Brickwork calculation and brick estimation
  • Los Angeles Abrasion test | Test for road aggregates
  • Shuttering removal time of different structural members
  • Weight of steel bars per meter – Weight of steel bars formula
  • How to calculate quantity of mortar and its materials
  • Specifications of First class brickwork
  • Properties of first class bricks

Pages

  • About CivilEngineeringTerms
  • Contact Us
  • Privacy Policy
  • Submit your article or Ask any query

Categories

  • Articles
  • Civil Engg Construction and Graphics
  • Civil Engg Construction and Graphics
  • Civil Engineering Construction
  • Civil Engineering Estimation
  • Civil Engineering Practice
  • Construction management
  • Design of Structures
  • Engineering Geology
  • Engineering Hydrology
  • Engineering Materials
  • Environment planning and practice
  • Environmental Engineering 1
  • Environmental psychology
  • Fluid Mechanics 1
  • Fluid Mechanics 2
  • General Terms related to Civil Engineering
  • Hydraulic Engineering
  • Introduction to Environmental Design
  • Mechanics of Solids 1
  • Mechanics of Solids 2
  • Pavement and Foundation
  • Plain & Reinforced Concrete-II
  • Research methodology
  • Soil Mechanics 1
  • Soil Mechanics 2
  • Steel Structures
  • Structural Engineering
  • Surveying and Levelling
  • Surveying and Levelling 2
  • Theory of structures 1
  • Transportation Engineering
  • Water Resources & Irrigation Engineering

Site Stats

Copyright © 2023 · Magazine Pro on Genesis Framework · WordPress · Log in