• Skip to main content
  • Skip to primary sidebar
  • Home
  • Construction Engineering
    • Civil Engineering Construction
    • Plain & Reinforced Concrete-II
    • Civil Engineering Estimation
    • Engineering Materials
    • Structural Engineering
  • Mechanics
    • Mechanics of Solids 1
    • Mechanics of Solids 2
    • Soil Mechanics 1
    • Soil Mechanics 2
  • Survey
    • Surveying and Levelling
    • Surveying and Levelling 2
  • Environmental Engineering
    • Environmental Engineering
    • Environmental psychology
    • Environment planning
    • Environmental Design
  • Water Engineering
    • Fluid Mechanics 1
    • Fluid Mechanics 2
    • Hydraulic Engineering
    • Irrigation Engineering
    • Engineering Hydrology
  • Misc.
    • Pavement and Foundation
    • Engineering Geology
    • Theory of structures
    • Design of Structures
    • Steel Structures
    • Research methodology
    • Transportation Engineering
    • Contact Us

Civil Engineering Terms

Easy and Understandable Terms Related to Civil Engineering

You are here: Home / Mechanics of Solids 1 / Modulus of Resilience | Modulus of Toughness | Poisson’s Ratio

Modulus of Resilience | Modulus of Toughness | Poisson’s Ratio

December 11, 2010 by admin Leave a Comment

Modulus of Resilience

The work done on a unit volume of material, as a simple tensile force is gradually increased from zero to such a value that the proportional limit of the material is reached, is defined as the modulus of resilience.

This may be calculated as the area under the stress-strain curve from the origin up to the proportional limit and is represented as the shaded area in the figure below.

Modulus of Toughness

The work done on a unit volume of material as a simple tensile force is gradually increased from zero to the value causing rupture is defined as the modulus of toughness.

Poisson’s Ratio

When a bar is subject to a simple tensile loading there is an increase in length of the bar in the direction of the load, but a decrease in the lateral dimensions perpendicular to the load. The ratio of the strain in the lateral direction to that in the axial direction is defined as Poisson’s ratio.

Filed Under: Mechanics of Solids 1

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

Sponsors

Recent Posts

  • Brick calculator | Brickwork calculation and brick estimation
  • Los Angeles Abrasion test | Test for road aggregates
  • Shuttering removal time of different structural members
  • Weight of steel bars per meter – Weight of steel bars formula
  • How to calculate quantity of mortar and its materials
  • Specifications of First class brickwork
  • Properties of first class bricks

Pages

  • About CivilEngineeringTerms
  • Contact Us
  • Privacy Policy
  • Submit your article or Ask any query

Categories

  • Articles
  • Civil Engg Construction and Graphics
  • Civil Engg Construction and Graphics
  • Civil Engineering Construction
  • Civil Engineering Estimation
  • Civil Engineering Practice
  • Construction management
  • Design of Structures
  • Engineering Geology
  • Engineering Hydrology
  • Engineering Materials
  • Environment planning and practice
  • Environmental Engineering 1
  • Environmental psychology
  • Fluid Mechanics 1
  • Fluid Mechanics 2
  • General Terms related to Civil Engineering
  • Hydraulic Engineering
  • Introduction to Environmental Design
  • Mechanics of Solids 1
  • Mechanics of Solids 2
  • Pavement and Foundation
  • Plain & Reinforced Concrete-II
  • Research methodology
  • Soil Mechanics 1
  • Soil Mechanics 2
  • Steel Structures
  • Structural Engineering
  • Surveying and Levelling
  • Surveying and Levelling 2
  • Theory of structures 1
  • Transportation Engineering
  • Water Resources & Irrigation Engineering

Site Stats

Copyright © 2023 · Magazine Pro on Genesis Framework · WordPress · Log in